X^2+40(x2)=1080

Simple and best practice solution for X^2+40(x2)=1080 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+40(x2)=1080 equation:



X^2+40(X2)=1080
We move all terms to the left:
X^2+40(X2)-(1080)=0
We add all the numbers together, and all the variables
41X^2-1080=0
a = 41; b = 0; c = -1080;
Δ = b2-4ac
Δ = 02-4·41·(-1080)
Δ = 177120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{177120}=\sqrt{144*1230}=\sqrt{144}*\sqrt{1230}=12\sqrt{1230}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{1230}}{2*41}=\frac{0-12\sqrt{1230}}{82} =-\frac{12\sqrt{1230}}{82} =-\frac{6\sqrt{1230}}{41} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{1230}}{2*41}=\frac{0+12\sqrt{1230}}{82} =\frac{12\sqrt{1230}}{82} =\frac{6\sqrt{1230}}{41} $

See similar equations:

| -24-8m=-4m-3+5m | | 9+4f=–2+7f−4 | | x-4=2(x=+ | | 6(-1)+3y=3 | | c—-21=83 | | 19x-21=17x+23 | | 200-x=4.5x | | -0.3(n-2.1)+0.9=-0.2(2n-1.2) | | 12+2t=-14 | | 6x+20+3x-14=180 | | 3(x−2)=x+5 | | 2x+2=6.6 | | 3x+11/7+x+7/5=8 | | 4(3m+2)=12(16+24m) | | (2x/3)-1=19 | | `5y=3y+12` | | (4z/(-16))=-16 | | 4+2z=–10 | | 2x-100=45 | | 3(x−2)=x+53x−6=x+52x=11x=5.5 | | x-5+7=2x-10 | | 1x-9=17 | | 3d−-3=6 | | 11=q+-11 | | -21+5b=5-4(4b-4) | | -5(-4v+3)-v=4(v-6)-9 | | .2x+3=6x+3-4x | | 3d−–3=6 | | 9,4p+2+8=35 | | -4x+8(7+2x)=3x-16 | | -8-8-a-2=2(a+1) | | 9x+15=6x-30 |

Equations solver categories